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1. Project Description
Pl: Michael Heroux, Sandia

 Summarize your project(s) and its scientific objectives
through 2017

* Advanced solvers:
* Tightly coupled multi-physics.
* Embedded nonlinear analysis, optimization and UQ.
» Algorithms, data classes for scalable manycore systems:
* Extract fine-grain data parallelism.
* Low-rank approximations for off-diagonal blocks.

* Linear solvers in service of advanced solvers.

e Resilient computations:
* Progress in presence of performance variability.
* Local failure-local recovery.
* Detect/correct soft errors.



1. Project Description (cont.)

Present/future focus:
e Coupled multi-physics:
e CASL: Drekar uses 32 Trilinos packages.
* Preconditioners: Physics-based utilizing ML, Ifpack, SuperLU,..
* Rapid app development in Albany: first concept to scalable app < 1 year.
e 2017: 6+ apps giving optimal solutions with error bars.

e Scalable, unstructured single DOF MG solves:
* Critical to scalability now and future.
e 2017: Scalable manycore smoothers, continued alg progress.

* Beginning-to-end Trilinos/component-based apps:

e Albany today.

e 2017: App consists of definition of physics (the “business rules”). Coordinated,
parametrized use of many interoperable, reusable components.



2. Computational Strategies

* We approach this problem computationally at a high level by:
* Vertical stack of interoperable components: Geometry-to-Analysis.
* Horizontal suites of interchangeable components: Swap-in functionality.

* The codes we use are:
* Direct sparse: SuperLU, MUMPS, etc.
* Partitioning: ParMetis, Skotch, etc.
* BLAS, LAPACK, etc.
* Wrappers to Hypre, PETSc functionality.



2. Computational Strategies ( cont.)

These codes are characterized by these algorithms:
e Unstructured problems.
* PDEs, circuits, medium range integral formulations (classical DFTs,
Peridynamics)
Our biggest computational challenges are:
 Effective use of manycore/accelerators.
e Continued solver scaling.
* Resilience.

Our parallel scaling is limited by:

* Varies by app: Load imbalance, lack of algorithmic scalability, strong
scaling limits, lack of need.

We expect our computational approach and/or codes to change
(or not) by 2017 in this way: More multi-physics, opt, UQ.



3. Current HPC Usage: N/A.

4. HPC Requirements for 2017: N/A




5. Strategies for New Architectures (1 of 2)

Does your software have CUDA/OpenCL directives; if yes, are they used,

and if not, are there plans for this?
— CUDA: Yes; OpenCL: No (maybe never).

Does your software run in production now on Titan using the GPUs?
— Yes, Denovo.

Does your software have OpenMP directives now; if yes, are they used,
and if not, are there plans for this?

— Yes, optional. Modest use, increasing dramatically with Intel MIC.

Does your software run in production now on Mira or Sequoia using
threading?
— No.

Is porting to, and optimizing for, the Intel MIC architecture underway or
planned?
— Yes, underway. Significant effort.



5. Strategies for New Architectures (2 of 2)

Have there been or are there now other funded groups or researchers

engaged to help with these activities?

* Current ASC funding for data structures/software. Current ASCR/RX-Solvers for
algorithms.

If you answered "no" for the questions above, please explain your strategy
for transitioning your software to energy-efficient, manycore architectures
* N/A.
What role should NERSC play in the transition to these architectures?
* Occasional access to resources for scaling studies has been and would be very helpful.

What role should DOE and ASCR play in the transition to these

architectures?

* DOE/NNSA: near-to-medium term, production oriented. DOE/ASCR: long-term, high
risk/high payoff.

Other needs or considerations or comments on transition to manycore:
* Continued activities focused on “disruptive” approaches, e.g., Parallex//XPI/HPX.



5. Special I/O Needs

* Does your code use checkpoint/restart capability now?
* Trilinos/Trios package provide 1/O functionality.

e 2017: Compatible data containers for compute & analytics.

* Do you foresee that a burst buffer architecture would
provide significant benefit to you or users of your code?

* Yes, for library features.
e Dual use as persistent store component for LFLR resilience.



Details: Multi-physics



Developing a New Turbulent
CFD Component (Drekar::CFD)

* Major CASL Driver is to adapt DOE Neutronics H-;:;?;Thacl:s
high performance computing (HPC) Fuel ywctural
technology for use in U.S. Nuclear Performance Multiphysics
industry. - Reactor
Y Chemistry Integrator System
Multi- i
Laboratory app. codes have resoluin  Mesh Motion/  panaermant
. Geomet Qualit
intellectual property/export control v improvement

restrictions

Advanced

Commercial CFD is a critical part of
CASL (CD-Adapco, ASCOMP GmbH)

fuel Hydra-TH Denovo

CASL advanced CFD addresses limits  Baseline 7 performance

in commercial codes: BOA p— e Drekar SCARS
B Scalabi“ty St‘g‘?gélé&al Star CCM+ DeCART
— Proprietary code base limits efficient Ueualan ) A A

multiphysics integration VIPRE-W

— Uncertainty quantification techniques are
typically limited to “black-box” sampling

— Publically available to all partners/NRC
— Advanced physics models RELAP5S

) system front-end
May 8-10, 2012 Roger Pawlowski - CIS 11

Geometry / Mesh / Data Transfer

LIMEZ2, Trilinos (NOX, ML, etc.), DAKOTA



Drekar::CFD Software Design
(UML Package Interaction Diagram)
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developing agile components.




Details: Manycore algorithms/
containers



Kokkos implementation algorithm:

* 1) Replace array allocations with Kokkos::Views (in
Host space)

* 2) Replace array access with Kokkos::Views

e 3) Replace functions with Functors, run in parallel on
Host

* 4) Set device to ‘Cuda’, ‘OpenMP’ or ‘Threads’ and
run on specified Device



FELIX ViscosityFO Def.hpp

for (stdissize t cell=0; cell < workset.numCells; ++cell) {
for (stdiisize_t qp=0; qp < numQPs; ++qp) {
//evaluate non-linear viscosity, given by Glen's law, at quadrature points
epsilonEqpSq = Ugrad(cell,qp,0,0)xUgrad(cell,qp,0,0); //epsilon_xx*2
epsilonEqpSq += Ugrad(cell,qp,1,1)xUgrad(cell,qp,1,1); //epsilon_yy"2
epsilonEqpSq += Ugrad(cell,qp,0,0)xUgrad(cell,qp,1,1); //epsilon_xxxepsilon_yy
epsilonEqpSq += 1.0/4.0x(Ugrad(cell,qp,0,1) + Ugrad(cell,qp,1,0))x(Ugrad(cell,qp,0,1) + Ugrad(cell,qp,1,0)); //epsilon_xy"2
epsilonEqpSq += 1.0/4.0xUgrad(cell,qp,0,2)xUgrad(cell,qp,0,2); //epsilon_xz*2
epsilonEqpSq += 1.0/4.0xUgrad(cell,qp,1,2)xUgrad(cell,qp,1,2); //epsilon_yz*2
epsilonEqpSq += ff; //add reqularization "fudge factor"
mu(cell,gp) = factorxpow(epsilonEqpSq, power); //non-linear viscosity, given by Glen's law



Viscosity Kokkos kernel

template < typename ScalarType, class DeviceType >

, factor_(factor)
class Viscosity {

, power_(power){}
Array2 mu_;

Array4d U_;
int numQPs_;

KOKKOS_INLINE_FUNCTION

void operator () (std::size_t i) const
ScalarType ff_; {

ScalarType factor_; ScalarType ep=0.0;

for (std::size_t j=0; j<numQPs_; j++)

{

ep=U_{(i, j,0,0)*U_{(i,j,0,0);

ep +=U_{i, j,1,1)*U_{(i,j,1,1);

ep +=U_{(i, j,0,0)*U_{(i,j,1,1);

ep +=1.0/4.0*(U_{(i, j,0,1)+ U_{(i,j,1,0))*(U_{(i,j,0,1)+U_{(i,j,1,0));
ep +=1.0/4.0*U_{(i,j,0,2)*U_{(i,j,0,2);

ep +=1.0/4.0*U_{(i,j,1,2)*U_{(i,j,1,2);

ScalarType power_;

public:
typedef DeviceType device_type;

Viscosity (Array2 &mu,
Array4 &u,
int numQPs,
ScalarType ff,

ep +=ff_;
ScalarType factor, mu_(i,j) = factor_*pow(ep, power_);
ScalarType power) }
: mu_(mu) }
, U_(u) 2

, humQPs_(numQPs)
, fE_(ff)



Evaluation environments

Compton:

e 42 nodes:

— Two 8-core Sandy Bridge Xeon E5-2670 @
2.6GHz (HT activated) per node,

— 24GB (3*8Gb) memory per node,
— Two Pre-production KNC 2 per node.

Shannon:

e 32 nodes:

— Two 8-core Sandy Bridge Xeon E5-2670 @
2.6GHz (HT deactivated) per node,

— 128GB DDR3 memory per node,
— 2x NVIDIA K20x per node
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Kokkos::Cuda on Shannon

Viscosity Host_time = 0.654771 Viscosity Device_time = 0.000481
Body Force Host_time = 0.014789 Body Force Device_time = 0.000451
Residual Host_time = 0.636981 Residual Device_time = 0.000536

Kokkos::Threads on Shannon

Viscosity Host_time = 0.69962  Viscosity Device_time = 0.045445
Body Force Host_time = 0.017365 Body Force Device_time = 0.002276
Residual Host_time = 0.565082 Residual Device_time = 0.040913

numThreads =2, numCores =8

Kokkos::OpenMP on Compton (MIC)

Viscosity Host_time = 7.41132 Viscosity Device_time = 0.019931
Body Force Host_time = 1.18717 Body Force Device_time = 0.010295
Residual Host_time = 35.458 Residual Device_time = 0.130741

numThreads =4, numCores =56
numCells=10000, numWorkSet=100



Details: Resilience Models



Enabling Local Recovery from Local
Faults

* Current recovery model:

Local node failure,
05\ : /lgf{h&;

global kill/restart. 7
* Different approach: SR iy

— App stores key recovery data |n1g
persistent local (per MPI rank)
storage (e.g., buddy, NVRAM),
and registers recovery function.

— Upon rank failure:

 MPI brings in reserve HW, assigns to
failed rank, calls recovery fn.

* App restores failed process state via its
persistent data (& neighbors’?).

20  All processes continue.



LFLR Algorithm Opportunities &
Challenges

* Enables fundamental algorithms work to aid fault
recovery:
— Straightforward app redesign for explicit apps.
— Enables reasoning at approximation theory level for
implicit apps:
 What state is required?

 What local discrete approximation is sufficiently accurate?
e What mathematical identities can be used to restore lost state?

— Enables practical use of many exist algorithms-based
fault tolerant (ABFT) approaches in the literature.
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First LFLR Example
* Prototype LFLR Transient PDE solver.

Data/work recovery time

e Simulated process lost.

* Simulated persistent stofe.

Persistent store time

e Over-provisioned MEP:

, # of Processes CG ALL
4 2.64 2.77

8 5.39 5.83

16 7.84 7.99

32 9.9 10.04

64 12.56 12.76

128 16.99 17.14

256 21.6 21.76

512 28.75 28.91

Results from explicit variant of Mantevo/MiniFE, Keita Teranishi




-

Dense Sparse

Design of LFLR
.

Scientific Data

Register/unregister

Recoverable
(Abstract Class to describe the recovery
mechanism for individual data object)

Persistent Storage
(Parity, Partner Redundancy, Key
Value Store, etc)

Process Manager (MPlI_COMM, Spare
Process, etc.)

MPI-ULFM -

23



Data Recovery from Computation

* Lots of scientific objects are

dependent on more compact data

objects Topology
— Higher abstraction of mathematical (Mesh)
model

* Can berecovered through
inexpensive computation

— 90%+ storage reduction in miniFE
— Some refactoring in scientific objects

— Increase roll-back overhead

Initial Latest

Condition Condition

Put them “recoverable” subclass

miniFE: 512x512x512: 1024 SandyBridge

CPU Cores (FDR IB)

With Matrix

Without Matrix

Storage per
core

53.94 MB

2.1 MB

Regenerate
overhead

(in memory ) 0.1 sec

(in global file system) 5 sec+

(in memory + compute)

0.6 sec

Matrix

Assembly

Matrix
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Every calculation matters

Soft Error Resilience

Description FLOPS | Recursive | Solution Error
Residual
Error

All Correct
Calcs

Iter=2, y[1] +=

1.0 35
SpMV incorrect

Ortho subspace

Q[1][1]+=1.0 N/C N/A
Non-ortho
subspace

343M  4.6e-15 1.0e-6
343M 6.7e-15 3.7e+3

7.7e-02 5.9e+5

Small PDE Problem: ILUT/GMRES
Correct result:35 Iters, 343M FLOPS
2 examples of a single bad op.

Solvers:
— 50-90% of total app operations.
— Soft errors most likely in solver.

Need new algorithms for soft errors:
— Well-conditioned wrt errors.
— Decay proportional to number of errors.

New Programming Model Elements:
« SW-enabled, highly reliable:
« Data storage, paths.
« Compute regions.
|dea: New algorithms with minimal
usage of high reliability.
First new algorithm: FT-GMRES.
« Resilient to soft errors.
« QOuter solve: Highly Reliable
* Inner solve: “bulk” reliability.
General approach applies to many
algorithms.

— Minimal impact when no errors.
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Skeptical Programming

| might not have a reliable digital machine

« Expect rare faulty computations
« Use analysis to derive cheap “detectors” to filter large errors
 Use numerical methods that can absorb bounded error

Algorithm 1: GMRES algorithm GMRES

for/ =1 to do

- (G—1) ;
ri=b—Ax\V U [ Theoretical Bounds on the \
qy :=r/||r[l Arnoldi Process
for =1 to restart d
[ wo Aq, ™ Iwoll = I Aqy | < ALl 2
for i — 1 to j do N— [woll < [[All2 < ||A]lF
frij = Qi Wi From isometry of orthogonal projections,
Wi = w; 1 — hy 5q;

end , \ |higl < ||AllF J

Py = ||wl],

Q= Wi i
Find y = min|[H;y — ||bl|e],| ° h;; form Hessenberg Matrix

Evaluate convergence criteria » Bound only computed once, valid for entire solve
Optionally, compute x; = Q;y
end

end

Evaluating the Impact of SDC in Numerical Methods
26 J. Elliott, M. Hoemmen, F. Mueller, SC’13




What is Needed for
Skeptical Programming?

e Skepticism.
 Meta-knowledge:
— Algorithms,
— Mathematics,

— Problem domain.

* Nothing else, at least to get started.



6. Summary

What new science results might be afforded by improvements in NERSC
computing hardware, software and services?
* New NERSC capabilities would benefit all of the stratetic directions for Trilinos (although
too much reliability could be a problem ©.
Recommendations on NERSC architecture, system configuration and the
associated service requirements needed for your science

 We are preparing for all reasonable architectures. Given other trends, we are tending to
focus on MIC more at this time.

NERSC generally refreshes systems to provide on average a 2X performance
increase every year. What significant scientific progress could you achieve
over the next 5 years with access to 32X your current NERSC allocation?

« N/A.
What "expanded HPC resources" are important for your project?

* N/A.
General discussion

* Cray relationship: Ongoing, focus on old (Epetra) and new (Tpetra) stack.



Extras



Are we really
starting from scratch?

* No! Leveraging/growing the agile

components base!

» Sandia has a 20+ year history in
HPC turbulent multiphase
reacting flow solvers

e Case Study: ASC and ASCR
funding recently generalized
multiphysics assembly kernels
into agile components

— Ideas explored in Charon and
SIERRA/Aria codes

— Abstracted to generic software
package

— Now forms the core for assembly
in Albany, Drekar::CFD,
Drekar::MHD, Charon2, and
Paradigm

May 8-10, 2012

i
i

1
e

Semiconductor
Drift Diﬁusig

| Raaou.s.

Multi-phase
Chemically
Reacting Aerosol

Roger Pawlowski - CIS

30




Rapid Implementation of New Physics
Using Graph-based Assembly Process

« Competing/Complementary Y L ,. _—
Discretization Technology: fr = ; ; (pCov - VT = Hv) 6 = q - V1] wylil =0
— Symbolics and code generation: N, N,
FEniCS/UFL/Dolphin/FIAT, Liszt R = Z Z [pv - Vv + o : V (¢ler)] wylil =0
— Symbolics in C++ - DSEL: Sundance e=1 g=1
— Graph-based assembly: Unitah o Ne N .
— Graph-based assembly + TBGP: R, = Z Z V -vg,wylj| =0
Drekar, Albany, SIERRA/Aria e=1 g=1

— Traditional coding of physics loops:
Libmesh, Deal.ll

» Advantages
— Template-based Generic Programming
— Automated dependency tracking

— Extreme flexibility: easy to add/swap
equations and models, test in isolation

— User controlled granularity

— Multi-core research: workset/alg.
Decomposition

— TPL integration
— Debugging

Notz, Pawlowski, Sutherland; TOMS in press




What is Needed for
Local Failure Local Recovery (LFLR)?

LFLR realization is non-trivial.
Programming API (but not complicated). ULFM helps.

Lots of runtime/OS infrastructure.
— Persistent storage API (frequent brainstorming outcome).

Research into messaging state and recovery? No.
New algorithms, apps re-work.

But:
— Can leverage global CP/R logic in apps.

This approach is often considered next step in beyond CP/R.



FT-GMRES Algorithm

Input: Linear system Ax = b and initial guess Xo | «ynreliably” computed.

ro := b — Axop, B :=||roll2, ¢1 == n/B Standard solver library call.

forj=1,2,... until convergence do . _
Inner solve: Solve for z; in g = Az Majority of computational cost.

Visi 1= Az

fori=1,2,...,kdo > Orthogonalize v 1
H(i,j) := Qi Vi1, Vist == Vier — GiH(, )

end for

H(j+1,]) == [[Vj41]l2
Update rank-revealing decomposition of H(1:/,1:j)

it H(j +1,/) is less than some tolerance then [ Gaptures true linear operator issues, AND

if H(1:/,1:j) not full rank then Can use some “garbage” soft error results.
Try recovery strategies '
else
Converged; return after end of this iteration
end if
else
Gj+1 = Vix1/H( +1,))
end if
yj :=argmin, |[H(1:/+1,1:j)y — Bes|l2 > GMRES projected problem
X=X+ [Z1,22,...,2Z]y > Solve for approximate solution

end for



What is Needed for Selective
Reliability?
A lot, lot.
A programming model.
Algorithms.

Lots of runtime/OS infrastructure.
Hardware support?
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Selective reliability enables “running

through” faults

> FT—GMRES{ can run through faults and still converge.
» Standard GMRES, with or without restarting, cannot.

Faut-Tolerant GMRES, restarted GMRES, and nonrestaned GMRES
(detarministic faulty SpMVSs In Inner solves)
T T T T

1 1 1
—— FT-GMRES{30,10)
GMRES(30), 10 restart cycies
—e— GMRES(300)

10° 4

)-—d-\‘%‘

107"

1 1 '
1 2 3 - 3 6 7 8 9 10 1"
Outer Iteration number

FT-GMRES vs. GMRES on
lll_Stokes (an ill-conditioned
discretization of a Stokes PDE).

Faut-Tolerant GMRES, restarted GMRES, and nonrestaned GMRES
(deterministic faulty SpMVSs In Inner soives)

10°
—— ET-GMRES(20,10)

GMRES(50), 10 restart cycies
—— GMRES{500)

1071

107

107°F

)

10 L
1 2 3 4 5 6 7 8 9 10 11

FT-GMRES vs. GMRES on
mult_dcop_ 03 (a Xyce circuit
simulation problem).



Desired properties of FT methods

* Converge eventually
— No matter the fault rate

— Or it detects and indicates failure
— Not true of iterative refinement!

 Convergence degrades gradually as fault rate
Increases

— Easy to trade between reliability and extra work
* Requires as little reliable computation as possible
* Can exploit fault detection if available

— e.g., if no faults detected, can advance aggressively
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Selective Reliability Programming

e Standard approach: * New approach:

— System over-constrains reliability — System lets app control reliability
— “Fail-stop” model — Tiered reliability
— Checkpoint / restart — “Run through” faults

— Application is ignorant of faults — App listens and responds to faults
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